Divisive Normalization: Justification and Effectiveness as Efficient Coding Transform

نویسنده

  • Siwei Lyu
چکیده

Divisive normalization (DN) has been advocated as an effective nonlinear efficient coding transform for natural sensory signals with applications in biology and engineering. In this work, we aim to establish a connection between the DN transform and the statistical properties of natural sensory signals. Our analysis is based on the use of multivariate t model to capture some important statistical properties of natural sensory signals. The multivariate t model justifies DN as an approximation to the transform that completely eliminates its statistical dependency. Furthermore, using the multivariate t model and measuring statistical dependency with multi-information, we can precisely quantify the statistical dependency that is reduced by the DN transform. We compare this with the actual performance of the DN transform in reducing statistical dependencies of natural sensory signals. Our theoretical analysis and quantitative evaluations confirm DN as an effective efficient coding transform for natural sensory signals. On the other hand, we also observe a previously unreported phenomenon that DN may increase statistical dependencies when the size of pooling is small.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normalized Image Representation for Efficient Coding

In this paper we propose an adaptive non-linear image representation based on the divisive normalization of localfrequency transforms used in contrast masking models. This normalized representation has two effects: (1) it increases the statistical independence of the coefficients of the representation and (2) it is Euclidean from a perceptual point of view. Experimental results show that reduci...

متن کامل

Divisive Normalization , Line AttractorNetworks and Ideal

Gain control by divisive inhibition, a.k.a. divisive normalization, has been proposed to be a general mechanism throughout the visual cortex. We explore in this study the statistical properties of this normalization in the presence of noise. Using simulations, we show that divisive normalization is a close approximation to a maximum likelihood estimator, which, in the context of population codi...

متن کامل

Divisive Normalization, Line Attractor Networks and Ideal Observers

Gain control by divisive inhibition, a.k.a. divisive normalization, has been proposed to be a general mechanism throughout the visual cortex. We explore in this study the statistical properties of this normalization in the presence of noise. Using simulations, we show that divisive normalization is a close approximation to a maximum likelihood estimator, which, in the context of population codi...

متن کامل

Feature Coding with a Statistically Independent Cortical Representation

Current models of primary visual cortex (V1) include a linear filtering stage followed by a gain control mechanism that explains some of the nonlinear behavior of neurons. The nonlinear stage has been modeled as a divisive normalization in which each input linear response is squared and then divided by a weighted sum of squared linear responses in a certain neighborhood. In this communication, ...

متن کامل

Dynamic divisive normalization predicts time-varying value coding in decision-related circuits.

Normalization is a widespread neural computation, mediating divisive gain control in sensory processing and implementing a context-dependent value code in decision-related frontal and parietal cortices. Although decision-making is a dynamic process with complex temporal characteristics, most models of normalization are time-independent and little is known about the dynamic interaction of normal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010